Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 257

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quantitative measurement of figure of merit for transverse thermoelectric conversion in Fe/Pt metallic multilayers

Yamazaki, Takumi*; Hirai, Takamasa*; Yagi, Takashi*; Yamashita, Yuichiro*; Uchida, Kenichi*; Seki, Takeshi*; Takanashi, Koki

Physical Review Applied (Internet), 21(2), p.024039_1 - 024039_11, 2024/02

 Times Cited Count:0

Journal Articles

Calculation of space-charge tune shift in a cylindrical chamber for bunched beams employing Green's function formalism

Shobuda, Yoshihiro

Physical Review Accelerators and Beams (Internet), 27(1), p.011001_1 - 011001_25, 2024/01

 Times Cited Count:0 Percentile:0.44(Physics, Nuclear)

When computing the space charge tune shift for a relativistic bunched beam within a cylindrical chamber, mirror currents for a coasting beam, initially introduced to replace the chamber wall, are employed. Subsequently, the obtained result is extended to encompass the bunched beam, taking into account the bunching factor which quantifies the distribution of bunches around the accelerator ring. In the process of derivation, the terms that characterize the bunch length are intuitively integrated into the formula. As a result, the validity of this approach has never been established. This study provides the derivation of the space charge tune shift formula for both relativistic and non-relativistic bunched beams right from the outset, employing the Green function formalism. Subsequently, it is compared with the earlier formula derived using mirror currents.

Journal Articles

Demonstration of a kicker impedance reduction scheme with diode stack and resistors by operating the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

Shobuda, Yoshihiro; Harada, Hiroyuki; Saha, P. K.; Takayanagi, Tomohiro; Tamura, Fumihiko; Togashi, Tomohito; Watanabe, Yasuhiro; Yamamoto, Kazami; Yamamoto, Masanobu

Physical Review Accelerators and Beams (Internet), 26(5), p.053501_1 - 053501_45, 2023/05

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

At the Rapid Cycling Synchrotron (RCS) in Japan Proton Accelerator Research Complex (J-PARC), theoretical predictions have indicated that the kicker-impedance would excite the beam-instability. A 1 MW beam with large emittance can be delivered to the Material and Life Science Experimental Facility (MLF) through suppression of the beam instabilities by choosing the appropriate machine parameters. However, we require other high-intensity and high-quality smaller emittance beams (than the 1 MW beam) for the Main Ring (MR). Hence, we proposed a scheme for suppressing the kicker-impedance by using prototype diodes and resistors, thereby demonstrating the effect on the kicker impedance reduction. However, the J-PARC RCS must be operated with a repetition rate of 25 Hz, which urged us to consider special diodes that are tolerant to heating. After developments, we have demonstrated that the special diodes with resistors can suppress the beam instability by reducing the kicker impedance. Enhanced durability of the prototype diodes and resistors for the 25 Hz operation was also realized. Moreover, the new diodes and the resistors have negligible effect on the extracted beam from the RCS. From a simulation point of view, the scheme can be employed for at least 5 MW beam operation within the stipulated specifications.

Journal Articles

Strong decays of singly heavy baryons from a chiral effective theory of diquarks

Kim, Y.*; Oka, Makoto; Suenaga, Daiki*; Suzuki, Kei

Physical Review D, 107(7), p.074015_1 - 074015_15, 2023/04

 Times Cited Count:1 Percentile:54.75(Astronomy & Astrophysics)

A chiral effective theory of scalar and vector diquarks is formulated, which is based on $$SU(3)_Rtimes SU(3)_L$$ chiral symmetry and includes interactions between scalar and vector diquarks with one or two mesons. We find that the diquark interaction term with two mesons breaks the $$U(1)_A$$ and flavor $$SU(3)$$ symmetries. To determine the coupling constants of the interaction Lagrangians, we investigate one-pion emission decays of singly heavy baryons $$Qqq$$ ($$Q = c$$, $$b$$ and $$q = u$$, $$d$$, $$s$$), where baryons are regarded as diquark-heavy-quark two-body systems. Using this model, we present predictions of the unobserved decay widths of singly heavy baryons. We also study the change of masses and strong decay widths of singly heavy baryons under partial restoration of chiral symmetry.

Journal Articles

Measurement of the longitudinal bunch-shape distribution for a high-intensity negative hydrogen ion beam in the low-energy region

Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Oguri, Hidetomo

Physical Review Accelerators and Beams (Internet), 26(3), p.032802_1 - 032802_12, 2023/03

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

A bunch-shape monitor (BSM) is a useful device for performing longitudinal beam tuning using the pointwise longitudinal phase distribution measured at selected points in the beam transportation. To measure the longitudinal phase distribution of a low-energy negative hydrogen (H$$^{-}$$) ion beam, highly oriented pyrolytic graphite (HOPG) was adopted for the secondary-electron-emission target to mitigate the thermal damage due to the high-intensity beam loading. The HOPG target enabled the measurement of the longitudinal phase distribution at the center of a 3-MeV H$$^{-}$$ ion beam with a high peak current of about 50 mA. The longitudinal bunch width was measured using HOPG-BSM at the test stand, which was consistent with the beam simulation. The correlation measurement between the beam transverse and longitudinal planes was demonstrated using HOPG-BSM. The longitudinal Twiss and emittance measurement with the longitudinal Q-scan method was conducted using HOPG-BSM.

Journal Articles

Self-learning Monte Carlo for non-Abelian gauge theory with dynamical fermions

Nagai, Yuki; Tanaka, Akinori*; Tomiya, Akio*

Physical Review D, 107(5), p.054501_1 - 054501_16, 2023/03

 Times Cited Count:3 Percentile:84.41(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

Hybridized propagation of spin waves and surface acoustic waves in a multiferroic-ferromagnetic heterostructure

Chen, J.*; Yamamoto, Kei; Zhang, J.*; Ma, J.*; Wang, H.*; Sun, Y.*; Chen, M.*; Ma, J.*; Liu, S.*; Gao, P.*; et al.

Physical Review Applied (Internet), 19(2), p.024046_1 - 024046_9, 2023/02

 Times Cited Count:4 Percentile:90.23(Physics, Applied)

Journal Articles

Understanding the nature of $$Omega(2012)$$ in a coupled-channel approach

L$"u$, Q.-F.*; Nagahiro, Hideko*; Hosaka, Atsushi

Physical Review D, 107(1), p.014025_1 - 014025_10, 2023/01

 Times Cited Count:3 Percentile:84.41(Astronomy & Astrophysics)

Journal Articles

$$S$$-wave fully charmed tetraquark resonant states

Wang, G.-J.*; Meng, Q.*; Oka, Makoto

Physical Review D, 106(9), p.096005_1 - 096005_9, 2022/11

 Times Cited Count:10 Percentile:86.95(Astronomy & Astrophysics)

$$S$$-wave resonances in the fully charmed tetraquark system are studied in the quark model. The complex scaling method allows us to get the complex eigen-energies of the tetraquark system above the fall-apart decay thresholds. We found two resonances in each of the $$J^{PC}=0^{++}$$, $$1^{+-}$$ and $$2^{++}$$ sectors, respectively. The obtained resonances are about 100 MeV higher than the recently found resonance, $$X(6900)$$.

Journal Articles

Open charm and bottom meson-nucleon potentials $`a$ la the nuclear force

Yamaguchi, Yasuhiro; Yasui, Shigehiro*; Hosaka, Atsushi

Physical Review D, 106(9), p.094001_1 - 094001_16, 2022/11

 Times Cited Count:1 Percentile:0.01(Astronomy & Astrophysics)

Journal Articles

Weinberg operator contribution to the $$CP$$-odd nuclear force in the quark model

Yamanaka, Nodoka*; Oka, Makoto

Physical Review D, 106(7), p.075021_1 - 075021_15, 2022/10

 Times Cited Count:1 Percentile:20.71(Astronomy & Astrophysics)

The contribution of the $$CP$$ violating three-gluon interaction, proposed by Weinberg, to the short-range $$CP$$-odd nuclear force is evaluated in the nonrelativistic quark model. We first show that the naive leading contribution generated by the quark exchange process vanishes at sufficiently short distance within the resonating group method, by considering the one-loop level gluon exchange $$CP$$-odd interquark potential induced by the Weinberg operator with massive quarks and gluons. We then estimate the true leading contribution by evaluating the gluonic correction to the $$CP$$-odd interquark potential in the closure approximation. It is found that the resulting irreducible $$CP$$-odd nuclear force is comparable to that generated by the chiral rotation of the $$CP$$-even short-range nuclear force, where the $$CP$$-odd mass calculated with QCD sum rules is used as input. The explicit calculation of the electric dipole moment (EDM) of the $$^3$$He nucleus yields $$d^{(irr)}_{3He}(w) = -1.5 w e$$ MeV. The total $$^3He$$ EDM, accounting for the intrinsic nucleon EDM, the pion-exchange and the short- range $$CP$$-odd nuclear force, is $$d_{(tot)}(w) = 20(+14-11) we$$ MeV, with the dominant effect coming from the intrinsic nucleon EDM.

Journal Articles

Nuclear pasta structures at high temperatures

Xia, C.-J.*; Maruyama, Toshiki; Yasutake, Nobutoshi*; Tatsumi, Toshitaka*

Physical Review D, 106(6), p.063020_1 - 063020_14, 2022/09

 Times Cited Count:4 Percentile:49.9(Astronomy & Astrophysics)

Journal Articles

Beam dynamics studies for fast beam trip recovery of the Japan Atomic Energy Agency accelerator-driven subcritical system

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro

Physical Review Accelerators and Beams (Internet), 25(8), p.080101_1 - 080101_17, 2022/08

 Times Cited Count:2 Percentile:52.69(Physics, Nuclear)

High reliability and availability are primary goals for the operation of particle accelerators, especially for accelerator-driven subcritical systems (ADS). ADSs employ high-power beams for the transmutation of minor actinide; as a result, the amount and the radiotoxicity of the nuclear waste are considerably reduced. To this end, the Japan Atomic Energy Agency is designing a 30-MW continuous wave (cw) super-conducting proton linear accelerator (linac) that supplies neutrons to an 800-MW subcritical reactor by a spallation process. The major challenge for an ADS linac is the strict control of the beam trip duration and its frequency to avoid thermal stress in the subcritical reactor structures. The maximum allowed beam trips for failures longer than a few seconds are estimated to be far below the rate achieved in current accelerators. Thus, we implemented a combination of hot standby and local compensation that enables a fast beam recovery. This work comprehensively investigated the tolerance of our linac lattice for the local compensations for failures in superconducting cavities and magnets. This scheme includes simultaneous compensation of multiple cavities in independent and same cryomodules that significantly enhance the reliability of the linac. The returned schemes present acceptable beam performance to guarantee the integrity of the linac and the beam transport to the target; moreover, they satisfy the beam stability in the beam window. In addition, the readjusted elements are subjected to moderate stress to ensure a sustainable operation. This manuscript reports the beam dynamics results toward fulfilling the high reliability demanded by an ADS linac.

Journal Articles

Electromagnetic transition amplitude for Roper resonance from holographic QCD

Fujii, Daisuke; Iwanaka, Akihiro*; Hosaka, Atsushi*

Physical Review D, 106(1), p.014010_1 - 014010_6, 2022/07

 Times Cited Count:0 Percentile:0.01(Astronomy & Astrophysics)

The Roper resonance, the first excited state of the nucleon, is one of the best established baryon resonates. Yet, its properties have not been consistently explained by effective models of QCD, such as the non-relativistic quark model. In this paper, we propose an alternative approach in the Sakai-Sugimoto model that is one of the holographic models of QCD. In particular, we analyze the helicity amplitude of the electromagnetic transitions at the leading of 't Hooft coupling $$1/lambda$$. The model incorporates baryon structure at short distance by nonlinear mesons surrounded by meson clouds at long distance. We demonstrate that the recently observed data by CLAS are explained in the present approach.

Journal Articles

$$phi$$ meson properties in nuclear matter from QCD sum rules with chirally separated four-quark condensates

Kim, J.*; Gubler, P.; Lee, S. H.*

Physical Review D, 105(11), p.114053_1 - 114053_9, 2022/06

 Times Cited Count:0 Percentile:0.01(Astronomy & Astrophysics)

Journal Articles

Large antisymmetric interlayer exchange coupling enabling perpendicular magnetization switching by an in-plane magnetic field

Masuda, Hiroto*; Seki, Takeshi*; Yamane, Yuta*; Modak, R.*; Uchida, Kenichi*; Ieda, Junichi; Lau, Y.-C.*; Fukami, Shunsuke*; Takanashi, Koki

Physical Review Applied (Internet), 17(5), p.054036_1 - 054036_9, 2022/05

 Times Cited Count:6 Percentile:73.14(Physics, Applied)

The antisymmetric interlayer exchange coupling (AIEC) was recently discovered, playing pivotal roles in magnetization switching of a synthetic antiferromagnet (SAF) through inducing magnetization canting. Large AIEC is reported for perpendicularly magnetized Pt/Co/Ir/Co/Pt with wedge-shaped layers. The effective field of the AIEC is related with symmetric interlayer exchange coupling, providing guides to enhance the AIEC. We develop an extended Stoner-Wohlfarth model for a SAF, revealing key factors in its magnetization switching. Combining the theoretical knowledge and the experimental results, perpendicular magnetization switching is achieved solely by an in-plane magnetic field.

Journal Articles

Strong decays of multistrangeness baryon resonances in the quark model

Arifi, A. J.*; Suenaga, Daiki*; Hosaka, Atsushi; Oh, Y. S.*

Physical Review D, 105(9), p.094006_1 - 094006_17, 2022/05

 Times Cited Count:7 Percentile:77.92(Astronomy & Astrophysics)

Journal Articles

Heavy-quark spin polarization induced by the Kondo effect in a magnetic field

Suenaga, Daiki*; Araki, Yasufumi; Suzuki, Kei; Yasui, Shigehiro*

Physical Review D, 105(7), p.074028_1 - 074028_19, 2022/04

 Times Cited Count:2 Percentile:36.77(Astronomy & Astrophysics)

We propose a new mechanism of the heavy-quark spin polarization (HQSP) in quark matter induced by the Kondo effect under an external magnetic field. The Kondo effect is caused by a condensate between a heavy and a light quark called the Kondo condensate leading to a mixing of the heavy- and light-quark spins. Thus, the HQSP is driven through the Kondo effect from light quarks coupling with the magnetic field in quark matter. For demonstration, we employ the Nambu-Jona-Lasinio type model under a magnetic field and investigate the HQSP within the linear response theory with vertex corrections required by the $$U(1)_{rm EM}$$ electromagnetic gauge invariance. As a result, we find that the HQSP arises significantly with the appearance of the Kondo effect. Our findings are testable in future sign-problem-free lattice simulations.

Journal Articles

Doubly heavy tetraquarks in a chiral-diquark picture

Kim, Y.*; Oka, Makoto; Suzuki, Kei

Physical Review D, 105(7), p.074021_1 - 074021_17, 2022/04

 Times Cited Count:15 Percentile:93.15(Astronomy & Astrophysics)

Energy spectrum of doubly heavy tetraquarks, $$T_{QQ}$$ ($$QQ bar{q} bar{q}$$ with $$Q = c, b$$ and $$q = u, d, s$$), is studied in the potential chiral-diquark model. Using the chiral effective theory of diquarks and the quark-diquark-based potential model, the $$T_{bb}$$, $$T_{cc}$$, and $$T_{cb}$$ tetraquarks are described as a three-body system composed of two heavy quarks and an antidiquark. We find several $$T_{bb}$$ bound states, while no $$T_{cc}$$ and $$T_{cb}$$ (deep) bound state is seen. We also study the change of the $$T_{QQ}$$ tetraquark masses under restoration of chiral symmetry.

Journal Articles

Decays of Roper-like singly heavy baryons in a chiral model

Suenaga, Daiki*; Hosaka, Atsushi

Physical Review D, 105(7), p.074036_1 - 074036_13, 2022/04

 Times Cited Count:5 Percentile:67.33(Astronomy & Astrophysics)

257 (Records 1-20 displayed on this page)